Neural Network Algorithm for Budget Expenditure Prediction in LPP RRI Gorontalo

  • Rubiyanto Maku Information Systems Study Program, University of Muhammadiyah Gorontalo, Gorontalo 9600, Indonesia
Keywords: Neural Network, Budget Expenditure, Prediction

Abstract

In this Data Mining research, the researcher uses the Neural Network Algorithm to predict budget expenditures at LPP RRI Gorontalo, the goal is to find out how much cash spending at LPP RRI Gorontalo is on average in each month, so it will make it easier for the Treasurer to control cash disbursements in each month. month. Using 412 Expenditure Records Data from 2013 to 2021, the lowest RMSE value is at Hiden Layer 11, Training Cyle 400, Learning Rate 0.1 and Momentum 0.1 with RMSE 0.142. Prediction results look better because they are closer to Real Data, so Neural Networks can be used to predicting spending at LPP RRI Gorontalo.

References

Fantoni, P. F., & Mazzola, A. (1996). A pattern recognition-artificial neural networks based model for signal validation in nuclear power plants. Annals of Nuclear Energy, 23(13), 1069-1076.

Finkler, S. A., Calabrese, T. D., & Smith, D. L. (2022). Financial management for public, health, and not-for-profit organizations. CQ Press.

Kurniawan, T. A., Lubis, A., Ihfandi, A., Satya, U., & Indonesia, N. (2018). Implementasi Data Mining Untuk Prediksi Daerah Rawan Penyakit Demam Berdarah Menggunakan Algoritma C45, 3(2), 50–58.

Mandasari, V., Tama, B. A., & Sriwijaya, U. (2011). Analisis Kepuasan Konsumen Terhadap Restoran Cepat Saji Melalui Pendekatan Data Mining : Studi Kasus XYZ. Jurnal Generik, 6(1), 4–7.

Meyer-Baese, A., & Schmid, V. J. (2014). Pattern recognition and signal analysis in medical imaging. Elsevier.

Mikesell, J. (2013). Fiscal administration. Cengage Learning.

Rosmilawati, S. (2017). Peran Radio Republik Indonesia (RRI) Palangkaraya Dalam Media Komunikasi Politik di Kalimantan Tengah. Restorica: Jurnal Ilmiah Ilmu Administrasi Negara Dan Ilmu Komunikasi. https://doi.org/10.33084/restorica.v3i1.634

Sadeeq, M. A., & Abdulazeez, A. M. (2020, December). Neural networks architectures design, and applications: A review. In 2020 International Conference on Advanced Science and Engineering (ICOASE) (pp. 199-204). IEEE.

Santoso, B. T. (2015). Analisa Dan Penerapan Metode C4.5 Untuk Prediksi Loyalitas Pelanggan. CEUR Workshop Proceedings, 1542(1), 33–36. https://doi.org/10.1017/CBO9781107415324.004

Soriano, J., Martínez, M. R., Tlusty, T., & Moses, E. (2008). Development of input connections in neural cultures. Proceedings of the National Academy of Sciences, 105(37), 13758-13763

Syafarina, G. A., Kom, S., & Kom, M. (2016). Penerapan Algoritma Neural Network Dalam Di Provinsi Kalimantan Selatan, 7(2), 80–88.

Published
2022-03-31
How to Cite
Maku, R. (2022). Neural Network Algorithm for Budget Expenditure Prediction in LPP RRI Gorontalo. Journal La Multiapp, 3(2), 61-67. https://doi.org/10.37899/journallamultiapp.v3i2.596